Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
BMC Ecol Evol ; 24(1): 54, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664655

RESUMEN

BACKGROUND: Bolete cultivation is economically and ecologically valuable. Ectomycorrhizae are advantageous for plant development and productivity. This study investigated how boletes affect the formation of Pinus thunbergii and Quercus acutissima ectomycorrhizae using greenhouse-based mycorrhizal experiments, inoculating P. thunbergii and Q. acutissima with four species of boletes (Suillus bovinus, Suillus luteus, Suillus grevillei, and Retiboletus sinensis). RESULTS: Three months after inoculation, morphological and molecular analyses identified S. bovinus, S. luteus, S. grevillei and R. sinensis ectomycorrhizae formation on the roots of both tree species. The mycorrhizal infection rate ranged from 40 to 55%. The host plant species determined the mycorrhiza morphology, which was independent of the bolete species. Differences in plant growth, photosynthesis, and endogenous hormone secretion primarily correlated with the host plant species. Infection with all four bolete species significantly promoted the host plants' growth and photosynthesis rates; indole-3-acetic acid, zeatin, and gibberellic acid secretion increased, and the abscisic acid level significantly decreased. Indole-3-acetic acid was also detected in the fermentation broths of all bolete species. CONCLUSIONS: Inoculation with bolete and subsequent mycorrhizae formation significantly altered the morphology and hormone content in the host seedlings, indicating growth promotion. These findings have practical implications for culturing pine and oak tree species.


Asunto(s)
Micorrizas , Pinus , Quercus , Micorrizas/fisiología , Quercus/microbiología , Quercus/crecimiento & desarrollo , Pinus/microbiología , Pinus/crecimiento & desarrollo , Basidiomycota/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Fotosíntesis
2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 606-614, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646747

RESUMEN

As the most senstitive plant organs to environmental changes, leaves serve as crucial indicators of plant survival strategies. We measured the morphology, anatomical traits, gas exchange parameters, and chlorophyll fluorescence parameters of Quercus aquifolioides (evergreen broad-leaved) and Sorbus rehderiana (deciduous broad-leaved) at altitudes of 2600, 2800, 3000, 3200 and 3400 m on the eastern edge of the Qinghai-Tibet Plateau, China. We explored the similarity and difference in their responses to altitude change and the ecological adaptation strategy. The results showed that as the altitude increased, leaf dry matter content of Q. aquifolioides decreased, that of S. rehderiana increased, leaf size for both species gradually decreased, and the palisade coefficient of Q. aquifolioides showed a decreasing trend, contrasting with the increasing trend in S. rehderiana. As the altitude increased, the thickness of leaves, palisade tissue, spongy tissue, upper epidermis, and lower epidermis of both species increased significantly, with the increment of 22.4%, 4.9%, 45.1%, 23.3%, 19.6%, and 28.2%, 46.9%, 8.9%, 25.9%, 20.8% at altitude of 3400 m, respectively, compared with the altitude of 2600 m. The gas exchange and chlorophyll fluorescence parameters of S. rehderiana significantly increased with increasing altitude, while Q. aquifolioides showed the opposite trend. Leaf anatomical traits, gas exchange, and chlorophyll fluorescence parameters of both species displayed considerable plasticity. There were significant correlations among most leaf traits and between leaf traits and altitude. The survival strategy of Q. aquifolioides was more conservative in response to altitude changes, while that of S. rehderiana was more active. Both species adapted to different altitudes by adjusting their own traits.


Asunto(s)
Altitud , Hojas de la Planta , Quercus , Sorbus , Quercus/fisiología , Quercus/crecimiento & desarrollo , China , Ecosistema , Tibet , Adaptación Fisiológica
3.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575023

RESUMEN

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Asunto(s)
Sequías , Bosques , Árboles , Árboles/fisiología , Italia , Quercus/crecimiento & desarrollo , Quercus/fisiología , Cambio Climático , Pinus/fisiología , Pinus/crecimiento & desarrollo , Monitoreo del Ambiente , Fraxinus/fisiología , Fraxinus/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Acer/fisiología
4.
PLoS One ; 16(10): e0259054, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34679119

RESUMEN

Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in regulating these responses. Therefore, in this study, we grew 288 two-year-old saplings of sessile oak (Quercus petraea (Matt.) Liebl.) in lamellar glass domes for three years to evaluate the effects of CO2 concentrations and nutrient supply on above- and belowground biomass, wood density, and wood structure. Elevated CO2 increased above- and belowground biomass by 44.3% and 46.9%, respectively. However, under elevated CO2 treatment, sapling wood density was markedly lower (approximately 1.7%), and notably wider growth rings-and larger, more efficient conduits leading to increased hydraulic conductance-were observed. Moreover, despite the vessels being larger in saplings under elevated CO2, the vessels were significantly fewer (p = 0.023). No direct effects of nutrient supply were observed on biomass growth, wood density, or wood structure, except for a notable decrease in specific leaf area. These results suggest that, although fewer and larger conduits may render the xylem more vulnerable to embolism formation under drought conditions, the high growth rate in sessile oak saplings under elevated CO2 is supported by an efficient vascular system and may increase biomass production in this tree species. Nevertheless, the decreased mechanical strength, indicated by low density and xylem vulnerability to drought, may lead to earlier mortality, offsetting the positive effects of elevated CO2 levels in the future.


Asunto(s)
Biomasa , Quercus/crecimiento & desarrollo , Suelo , Madera/crecimiento & desarrollo , Dióxido de Carbono , Árboles/crecimiento & desarrollo
5.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681955

RESUMEN

Leaf blight disease caused by Pestalotiopsismaculans lead to deleterious losses in the quality of forest container seedlings. The use of plant growth-promoting bacteria provides a promising strategy to simultaneously control diseases and enhance forest seedling production. This study investigated the biocontrol of leaf blight disease and growth promotion potential of Bacillus velezensis CE 100 in Quercus acutissima Carruth seedlings. B. velezensis CE 100 produced cell wall degrading enzymes, such as chitinase, ß-l,3-glucanase, and protease, which caused cell wall lysis and hyphae deformation of P. maculans, leading to mycelial growth inhibition by 54.94%. Inoculation of B. velezensis CE 100 suppressed P. maculans infection and increased seedling survival rate by 1.6-fold and 1.3-fold compared to chemical fertilizer and control, respectively. In addition, B. velezensis CE 100 produced indole-3-acetic acid, which improved root development and nutrient uptake compared to chemical fertilizer and control. Especially, inoculation with B. velezensis CE 100 increased the total nitrogen content of Q. acutissima seedlings, improved the chlorophyll index in the leaves, and increased seedling biomass by 1.3-fold and 2.2-fold compared to chemical fertilizer and control, respectively. Thus, B. velezensis CE 100 could be applied in the eco-friendly production of high-quality forest seedlings.


Asunto(s)
Antifúngicos/farmacología , Bacillus/química , Control Biológico de Vectores , Pestalotiopsis/fisiología , Enfermedades de las Plantas/prevención & control , Quercus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Bosques , Desarrollo de la Planta , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Quercus/microbiología , Plantones/microbiología
6.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2791-2799, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34664452

RESUMEN

The variations in plant growth of 32 Quercus acutissima provenances in three sites (Yongfeng, Jiangxi; Kaihua, Zhejiang and Chuzhou, Anhui) were studied. The AMMI model was used to analyze the stability of growth traits and to select the best provenances. The results showed that tree height, diameter at breast (ground) height, and aboveground biomass (AGB) per individual of the provenances were significantly different in the three sites. The AGB per individual was significantly affected by site, provenance, and the interaction of provenance × site. Site had the greatest impact on the variation of tree growth, followed by provenance and provenance × site. The growth performance of these superior provenances in different sites varied greatly in the seedling stage (1-3 years old) and young forest stage (4-11 years old). Based on the AGB per individual in the 11st year, the best provenances were selected in each site. Seven superior provenances of Yongfeng, Jiangxi were selected, with the average AGB per individual increased by 15.6%-57.8% compared with the ave-rage value. Seven superior provenances of Kaihua, Zhejiang were selected, with the average AGB per individual increased by 19.2%-45.2%. Eight superior provenances of Chuzhou, Anhui were selected,with the average AGB per individual increased by 24.9%-63.3%. According to the growth performance and stability, four superior provenances were selected to develop short-rotation charcoal forest cultivation across three sites, with an average AGB per individual of 36.55 kg and an average stability parameter of 0.97.


Asunto(s)
Quercus , China , Bosques , Geografía , Fenotipo , Quercus/crecimiento & desarrollo , Árboles/crecimiento & desarrollo
7.
PLoS One ; 16(10): e0259391, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34714883

RESUMEN

Ocean-going ships were key to rising maritime economies of the Early Modern period, and understanding how they were built is critical to grasp the challenges faced by shipwrights and merchant seafarers. Shipwreck timbers hold material evidence of the dynamic interplay of wood supplies, craftmanship, and evolving ship designs that helped shape the Early Modern world. Here we present the results of dendroarchaeological research carried out on Batavia's wreck timbers, currently on display at the Western Australian Shipwrecks Museum in Fremantle. Built in Amsterdam in 1628 CE and wrecked on its maiden voyage in June 1629 CE in Western Australian waters, Batavia epitomises Dutch East India Company (Verenigde Oostindische Compagnie, or VOC) shipbuilding. In the 17th century, the VOC grew to become the first multinational trading enterprise, prompting the rise of the stock market and modern capitalism. Oak (Quercus sp.) was the preferred material for shipbuilding in northern and western Europe, and maritime nations struggled to ensure sufficient supplies to meet their needs and sustain their ever-growing mercantile fleets and networks. Our research illustrates the compatibility of dendrochronological studies with musealisation of shipwreck assemblages, and the results demonstrate that the VOC successfully coped with timber shortages in the early 17th century through diversification of timber sources (mainly Baltic region, Lübeck hinterland in northern Germany, and Lower Saxony in northwest Germany), allocation of sourcing regions to specific timber products (hull planks from the Baltic and Lübeck, framing elements from Lower Saxony), and skillful woodworking craftmanship (sapwood was removed from all timber elements). These strategies, combined with an innovative hull design and the use of wind-powered sawmills, allowed the Dutch to produce unprecedented numbers of ocean-going ships for long-distance voyaging and interregional trade in Asia, proving key to their success in 17th-century world trade.


Asunto(s)
Comercio/historia , Navíos/historia , Madera/análisis , Historia del Siglo XVII , Países Bajos , Quercus/crecimiento & desarrollo
8.
Rev. biol. trop ; 69(3)sept. 2021.
Artículo en Español | LILACS, SaludCR | ID: biblio-1387680

RESUMEN

Resumen Introducción: Los estudios dendrocronológicos en México se han basado principalmente en las coníferas, mientras que las especies de madera dura han sido poco estudiadas. Este ha sido el caso del género Quercus, con una alta diversidad taxonómica en el país pero que no ha sido estudiado con fines dendrocronológicos, a pesar de los valores ecológicos y económicos de sus especies. Objetivo: En la presente investigación se determinó el potencial dendroclimático de Quercus sideroxyla en el noroeste de México, y su relación con variables climáticas como precipitación y temperatura. Métodos: La investigación se desarrolló en el estado de Durango en el ejido Chavarría Viejo en las coordenadas (23º43' N & 105º33' W), se recolectaron muestras de 5 a 7 cm en dos sitios bajo aprovechamiento forestal y se procesaron mediante técnicas dendrocronológicas convencionales. Resultados: Se desarrolló una cronología de ancho de anillo total, la cual se compuso por 30 muestras de 16 árboles para el período de 1917 a 2018 (101 años). Se obtuvieron valores de intercorrelación entre series de 0.43, de sensibilidad media de 0.36, relación señal-ruido de 3.53 y autocorrelación de primer orden (0.58). En cuanto a la relación clima-crecimiento, los valores de índice de ancho de anillo se correlacionaron con datos de la estación climática más cercana al sitio de estudio; donde la precipitación invierno-primavera (enero-mayo) fue la variable de mayor influencia en el crecimiento de la especie. Conclusiones: Con base en los parámetros dendrocronológicos se demuestra el alto potencial de la especie para ser empleada en estudios dendroclimáticos en la región, la respuesta de la especie a la precipitación es similar al de las coníferas con las que cohabita.


Abstract Introduction: Dendrochronological studies in Mexico have been mainly based on conifers, while hardwood species have been little studied. This has been the case of the genus Quercus, which has a high taxonomic diversity in the country but has not been previously studied for dendrochronological issues, despite the ecological and economic values of oak species. Objective: In the present investigation, the dendroclimatic potential of Quercus sideroxyla in Northwestern Mexico was determined, as well as its relationship with climatic variables such as precipitation and temperature. Methods: The research was carried out in the state of Durango, Chavarría Viejo with coordinates (23º43' N & -105º33' W). Samples of 5 cm to 7cm were collected in two sites under forest exploitation and processed by conventional dendrochronological techniques. Results: A chronology of total ring width was developed, which was composed of 30 samples from 16 trees for the period from 1917 to 2018 (101 years). Inter-series intercorrelation values of 0.43, mean sensitivity of 0.36, signal-to-noise ratio of 3.53 and first-order autocorrelation (0.58) were obtained. Regarding the climate-growth relationship, the ring width index values were correlated with data from the climatic station nearest to the study site, where winter-spring precipitation (January-May) was the variable with the greatest influence on the growth of the species. Conclusions: Based on the dendrochronological parameters, the high potential of the species that were used in dendroclimatic studies in the region has demonstrated that the response of the species to precipitation is similar to that of the conifers with which the Quercus sideroxyla shares its habitat with.


Asunto(s)
Cronología , Quercus/crecimiento & desarrollo , Clima
9.
PLoS One ; 16(7): e0243954, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264949

RESUMEN

Light spectra of sunlight transmittance can generate an interactive effect with deposited nitrogen (N) on regenerated plants across varied shading conditions. Total N content in understory plants can be accounted for by both exogeneous and endogenous sources of derived N, but knowledge about the response of inner N cycling to interactive light and N input effects is unclear. We conducted a bioassay on Chinese cork oak (Quercus variabilis Blume) seedlings subjected to five-month N pulsing with 15NH4Cl (10.39 atom %) at 120 mg 15N plant-1 under the blue (48.5% blue, 33.7% green, and 17.8% red), red (14.6% blue, 71.7% red, 13.7% green), and green (17.4% blue, 26.2% red, 56.4% green) lighting-spectra. Half of the seedlings were fed twice a week using a 250 ppm N solution with micro-nutrients, while the other half just received distilled water. Two factors showed no interaction and neither affected growth and morphology. Compared to the red-light spectrum, that in blue light increased chlorophyll and soluble protein contents and glutamine synthetase (GS) activity, root N concentration, and N derived from the pulses. The green-light spectrum induced more biomass allocation to roots and a higher percentage of N derived from internal reserves compared to the red-light spectrum. The 15N pulses reduced the reliance on N remobilization from acorns but strengthened shoot biomass, chlorophyll content, GS activity, and N concentration. In conclusion, light spectrum imposed an independent force from external N pulse to modify the proportion of N derived from internal sources in total N content in juvenile Q. variabilis.


Asunto(s)
Isótopos de Nitrógeno/farmacología , Hojas de la Planta/anatomía & histología , Quercus/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Luz Solar , Biomasa , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Quercus/efectos de los fármacos , Quercus/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/efectos de la radiación
10.
Molecules ; 26(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919481

RESUMEN

This study aimed to evaluate a complete nutritional composition in the seeds Quercus virginiana to compare this nutritional composition with three Mediterranean Quercus species. We analyzed the seed morphometry, proximate composition, phytochemicals, and antioxidant capacity. The seed of Q. virginiana presented the smaller seed size and weight, while Q. suber presented the highest values. Moreover, Q. virginiana seeds showed the highest amounts of sugar and total lipids, digestibility, energy, palmitic acid, and stearic acid. On the other hand, Q. virginiana seeds showed the lowest values of linoleic acid. Moreover, Q. coccifera seeds presented the highest total phenolics and flavonoids contents and antioxidant activity. The clustering analysis revealed a significant similarity in seed morphometry and nutritional composition between the Mediterranean Q. ilex and Q. suber, grouping with the American Q. virginiana, but to a considerable distance; by contrast, the Mediterranean Q. coccifera was the most distant in the clustering analysis. The content of phenolics and flavonoids and digestibility value were the variables that contributed to the separation to a greater extent in the clustering of the four species. The nutritional and biological activity assessment of plant seed may be considered as an essential mission to find new sustainable sources and novel chemical agents. In this sense, Quercus seeds may be an alternative and a competitive food source for the agri-food industry.


Asunto(s)
Antioxidantes/química , Fitoquímicos/química , Quercus/química , Semillas/química , Antioxidantes/aislamiento & purificación , Germinación/efectos de los fármacos , Humanos , Región Mediterránea , Fenoles/química , Fenoles/aislamiento & purificación , Fitoquímicos/aislamiento & purificación , Quercus/clasificación , Quercus/crecimiento & desarrollo , Estados Unidos
11.
Integr Zool ; 16(5): 637-645, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32930479

RESUMEN

Although radicle pruning has well been observed in plant-animal interactions, research has not been conducted to determine how radicle pruning by seed-eating animals regulates nutrition mobilization of cotyledonary reserves and absorption of soil nutrients. We used stable nitrogen isotopes to test how acorns of early-germinating oak species (Quercus variabilis, Q. aliena, and Q. mogolica) trade off nutrients in the cotyledons and those in the soil in response to radicle pruning by seed-eating rodents. Radicle pruning by rodents resulted in root branching in the 3 early-germinating oak species. Moreover, radicle pruning increased shoot dry weight and substantially reduced the root-to-shoot ratio of oak species. Corresponding to the decreased dry weight of roots and root-to-shoot ratio, the dry weight of the remnant cotyledons was higher after radicle pruning in the 3 oak species. We provided first evidence that radicle pruning by seed-eating animals improved seedling performance of early-germinating oaks by increasing absorption of nutrients from soil. The results indicate that early-germinating oak seedlings trade off nutrition budget by altering nutrient absorption from soil and reserve mobilization from cotyledons in response to radicle pruning by seed-eating animals. Our study provided new insight into the nutrition allocation mechanism of young seedlings in response to radicle pruning by seed-eating animals, reflecting a mutualistic interaction between early-germinating oak and food-hoarding animals.


Asunto(s)
Conducta Alimentaria , Raíces de Plantas/crecimiento & desarrollo , Quercus/crecimiento & desarrollo , Sciuridae/fisiología , Plantones/crecimiento & desarrollo , Suelo/química , Animales
12.
Plant Cell Environ ; 44(4): 1243-1256, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32683699

RESUMEN

Hydraulic redistribution (HR) can buffer drought events of tree individuals, however, its relevance for neighbouring trees remains unclear. Here, we quantified HR to neighbouring trees in single- and mixed-species combinations. We hypothesized that uptake of HR water positively correlates with root length, number of root tips and root xylem hydraulic conductivity and that neighbours in single-species combinations receive more HR water than in phylogenetic distant mixed-species combinations. In a split-root experiment, a sapling with its roots split between two pots redistributed deuterium labelled water from a moist to a dry pot with an additional tree each. We quantified HR water received by the sapling in the dry pot for six temperate tree species. After 7 days, one quarter of the water in roots (2.1 ± 0.4 ml), stems (0.8 ± 0.2 ml) and transpiration (1.0 ± 0.3 ml) of the drought stressed sapling originated from HR. The amount of HR water transpired by the receiving plant stayed constant throughout the experiment. While the uptake of HR water increased with root length, species identity did not affect HR as saplings of Picea abies ((L.) Karst) and Fagus sylvatica (L.) in single- and mixed-species combinations received the same amount of HR water.


Asunto(s)
Bosques , Árboles/fisiología , Acer/crecimiento & desarrollo , Acer/fisiología , Deshidratación , Fagaceae/crecimiento & desarrollo , Fagaceae/fisiología , Hojas de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Transpiración de Plantas , Pseudotsuga/crecimiento & desarrollo , Pseudotsuga/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Árboles/crecimiento & desarrollo , Agua/metabolismo , Xilema/crecimiento & desarrollo , Xilema/fisiología
13.
PLoS One ; 15(12): e0242003, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33264310

RESUMEN

The expansion of woody plants into grasslands and old fields is often ascribed to fire suppression and heavy grazing, especially by domestic livestock. However, it is also recognized that nutrient availability and interspecific competition with grasses and other woody plants play a role in certain habitats. I examined potential factors causing range- and niche expansion by the eastern redcedar Juniperus virginiana, the most widespread conifer in the eastern United States, in multifactorial experiments in a greenhouse. Historical records suggest that the eastern redcedar is a pioneer forest species, and may be replaced as the forest increases in tree density due to shading. Another possible factor that affects its distribution may be nutrient availability, which is higher in old fields and other disturbed lands than in undisturbed habitats. In its historic range, eastern redcedars are particularly abundant on limestone outcrops, often termed 'cedar barrens'. However, the higher abundance on limestone could be due to reduced interspecific competition rather than a preference for high pH substrates. I manipulated shade, fertilization, lime, and interspecific competition with a common dominant tree, the post oak Quercus stellata. In a separate experiment, I manipulated fire and grass competition. I measured growth rates (height and diameter) and above- and belowground biomass at the end of both experiments. I also measured total non-structural carbohydrates and nitrogen in these plants. Shade was the most important factor limiting the growth rates and biomass of eastern redcedars. I also found that there were significant declines in nitrogen and non-structural carbohydrates when shaded. These results are consistent with the notion that the eastern redcedar is a pioneer forest species, and that shade is the reason that these redcedars are replaced by other tree species. In the second experiment, I found that a single fire had a negative effect on young trees. There was no significant effect of competition with grass, perhaps because the competitive effect was shading by grasses and not nutrient depletion. Overall, the effects of shade were far more apparent than the effects of fire.


Asunto(s)
Bosques , Juniperus/crecimiento & desarrollo , Nitrógeno/metabolismo , Quercus/crecimiento & desarrollo , Biomasa , Ecosistema , Incendios , Pradera , Juniperus/metabolismo , Poaceae/crecimiento & desarrollo , Quercus/metabolismo , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Estados Unidos
14.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190519, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32892722

RESUMEN

The inter-annual variability (IAV) of the terrestrial carbon cycle is tightly linked to the variability of semi-arid ecosystems. Thus, it is of utmost importance to understand what the main meteorological drivers for the IAV of such ecosystems are, and how they respond to extreme events such as droughts and heatwaves. To shed light onto these questions, we analyse the IAV of carbon fluxes, its relation with meteorological variables, and the impact of compound drought and heatwave on the carbon cycle of two similar ecosystems, along a precipitation gradient. A four-year long dataset from 2016 to 2019 was used for the FLUXNET sites ES-LMa and ES-Abr, located in central (39°56'25″ N 5°46'28″ W) and southeastern (38°42'6″ N 6°47'9″ W) Spain. We analyse the physiological impact of compound drought and heatwave on the dominant tree species, Quercus ilex. Our results show that the gross primary productivity of the wetter ecosystem was less sensitive to changes in soil water content, compared to the dryer site. Still, the wetter ecosystem was a source of CO2 each year, owing to large ecosystem respiration during summer; while the dry site turned into a CO2 sink during wet years. Overall, the impact of the summertime compound event on annual CO2 fluxes was marginal at both sites, compared to drought events during spring or autumn. This highlights that drought timing is crucial to determine the annual carbon fluxes in these semi-arid ecosystems. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Clima Desértico , Sequías , Calor Extremo , Quercus/crecimiento & desarrollo , Ecosistema , Lluvia , España
15.
BMC Plant Biol ; 20(1): 389, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32842952

RESUMEN

BACKGROUND: Phosphorus (P) -rich soils develop in phosphorite residing areas while P-deficient soils are ubiquitous in subtropical regions. Little has been reported that how metabolites participate in the seed development and the processes involved in their coping with contrasting-nutrient environments. RESULTS: Here we quantified the metabolites of Quercus variabilis acorns in the early (July), middle (August), late (September) development stages, and determined element (C, H, O, N, P, K, Ca, Mg, S, Fe, Al, Mn, Na, Zn, and Cu) concentrations of acorns in the late stage, at geologically-derived contrasting-P sites in subtropical China. The primary metabolic pathways included sugar metabolism, the TCA cycle, and amino acid metabolism. Most metabolites (especially C- and N-containing metabolites) increased and then decreased from July to September. Acorns between the two sites were significantly discriminated at the three stages, respectively, by metabolites (predominantly sugars and organic acids). Concentrations of P, orthophosphoric acid and most sugars were higher; erythrose was lower in late-stage acorns at P-rich sites than those at P-deficient sites. No significant differences existed in the size and dry mass of individual acorns between oak populations at the two sites. CONCLUSIONS: Oak acorns at the two sites formed distinct metabolic phenotypes related to their distinct geologically-derived soil conditions, and the late-stage acorns tended to increase P-use-efficiency in the material synthesis process at P-deficient sites, relative to those at P-rich sites.


Asunto(s)
Fósforo/metabolismo , Quercus/crecimiento & desarrollo , Quercus/metabolismo , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Suelo/química , China , Germinación/fisiología , Estaciones del Año
16.
PLoS One ; 15(6): e0229807, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32502167

RESUMEN

The success of tree recruitment in Mediterranean holm oak (Quercus ilex) forests is threatened by the increasing intensity, duration and frequency of drought periods. Seedling germination and growth are modulated by complex interactions between abiotic (microhabitat conditions) and biotic factors (mycorrhiza association) that may mitigate the impacts of climate change on tree recruitment. To better understand and anticipate these effects, we conducted a germination experiment in a long-term precipitation reduction (PR) field experiment where we monitored seedling establishment and survival, micro-habitat conditions and ectomycorrhizal (ECM) colonization by different mycelia exploration types during the first year of seedling growth. We hypothesized that (i) the PR treatment decreases seedling survival relative to the control with ambient conditions, (ii) microhabitat conditions of water and light availability are better predictors of seedling survival than the PR treatment, (iii) the PR treatment will favour the development of ECM exploration types with drought-resistance traits such as differentiated rhizomorphs. Contrary to our first hypothesis, seedling survival was lower in control plots with overall higher soil moisture. Micro-habitat light and soil moisture conditions were better predictors of seedling survival and growth than the plot-level PR treatment, confirming our second hypothesis. Furthermore, in line with our third hypothesis, we found that ECM with longer extramatrical mycelia were more abundant in the PR treatment plots and were positively correlated to survival, which suggests a potential role of this ECM exploration type in seedling survival and recruitment. Although summer drought was the main cause of seedling mortality, our study indicates that drier conditions in spring can increase seedling survival, presumably through a synergistic effect of drought adapted ECM species and less favourable conditions for root pathogens.


Asunto(s)
Sequías , Ecosistema , Micorrizas/fisiología , Quercus/crecimiento & desarrollo , Quercus/microbiología , Plantones/microbiología , Plantones/fisiología , Germinación , Análisis de Supervivencia
17.
Sci Rep ; 10(1): 9542, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533000

RESUMEN

The geographic distribution of species depends on their relationships with climate and on the biotic interactions of the species. Ecological Niche Models (ENMs) mainly consider climatic variables only and may tend to overestimate these distributions, especially for species strongly restricted by biotic interactions. We identified the preference of Laelia speciosa for different host tree species and include this information in an ENM. The effect of habitat loss and climate change on the distribution of these species was also estimated. Although L. speciosa was recorded as epiphyte at six tree species, 96% of the individuals were registered at one single species (Quercus deserticola), which indicated a strong biotic interaction. We included the distribution of this host tree as a biotic variable in the ENM of L. speciosa. The contemporary distribution of L. speciosa is 52,892 km2, which represent 4% of Mexican territory and only 0.6% of the distribution falls within protected areas. Habitat loss rate for L. speciosa during the study period was 0.6% per year. Projections for 2050 and 2070 under optimistic and pessimistic climate change scenarios indicated a severe reduction in its distribution. Climaticaly suitable areas will also shift upwards (200-400 m higher). When estimating the distribution of a species, including its interactions can improve the performance of the ENMs, allowing for more  accurate estimates of the actual distribution of the species, which in turn allows for better conservation strategies.


Asunto(s)
Orchidaceae/crecimiento & desarrollo , Quercus/crecimiento & desarrollo , Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales/métodos , Ecosistema , México , Árboles/crecimiento & desarrollo
18.
Plant Cell Environ ; 43(8): 1944-1957, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32394490

RESUMEN

Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non-structural carbohydrate reserves (NSC), but hydraulic limitations could also be important. We conducted a multifactorial experiment with two levels of light (ambient, 2-3% of ambient) and three levels of water stress (0, 50 and 80 percent losses of hydraulic conductivity, PLC) on two Mediterranean oaks (Quercus ilex and Q. faginea) under a rain-out shelter (n = 360). The proportion of resprouting individuals after canopy clipping declined markedly as PLC increased for both species. NSC concentrations affected the response of Q. ilex, the species with higher leaf construction costs, and its effect depended on the PLC. The growth of resprouting individuals was largely dependent on photosynthetic rates for both species, while stored NSC availability and hydraulic limitations played minor and non-significant roles, respectively. Contrary to conventional wisdom, our results indicate that resprouting in oaks may be primarily driven by complex interactions between hydraulics and carbon sources, whereas stored NSC play a significant but secondary role.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Raíces de Plantas/metabolismo , Quercus/fisiología , Deshidratación , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Quercus/crecimiento & desarrollo , España
19.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471127

RESUMEN

Modifications of DNA and histones, including methylation and acetylation, are critical for the epigenetic regulation of gene expression during plant development, particularly during environmental adaptation processes. However, information on the enzymes catalyzing all these modifications in trees, such as Quercus suber L., is still not available. In this study, eight DNA methyltransferases (DNA Mtases) and three DNA demethylases (DDMEs) were identified in Q. suber. Histone modifiers involved in methylation (35), demethylation (26), acetylation (8), and deacetylation (22) were also identified in Q. suber. In silico analysis showed that some Q. suber DNA Mtases, DDMEs and histone modifiers have the typical domains found in the plant model Arabidopsis, which might suggest a conserved functional role. Additional phylogenetic analyses of the DNA and histone modifier proteins were performed using several plant species homologs, enabling the classification of the Q. suber proteins. A link between the expression levels of each gene in different Q. suber tissues (buds, flowers, acorns, embryos, cork, and roots) with the functions already known for their closest homologs in other species was also established. Therefore, the data generated here will be important for future studies exploring the role of epigenetic regulators in this economically important species.


Asunto(s)
Epigénesis Genética , Genoma de Planta , Quercus/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios Proteicos , Quercus/enzimología , Quercus/crecimiento & desarrollo
20.
ISME J ; 14(6): 1410-1421, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32080356

RESUMEN

The ability to measure microbial fitness directly in natural conditions and in interaction with other microbes is a challenge that needs to be overcome if we want to gain a better understanding of microbial fitness determinants in nature. Here we investigate the influence of the natural microbial community on the relative fitness of the North American populations SpB, SpC and SpC* of the wild yeast Saccharomyces paradoxus using DNA barcodes and a soil microcosm derived from soil associated with oak trees. We find that variation in fitness among these genetically distinct groups is influenced by the microbial community. Altering the microbial community load and diversity with an irradiation treatment significantly diminishes the magnitude of fitness differences among populations. Our findings suggest that microbial interactions could affect the evolution of yeast lineages in nature by modulating variation in fitness.


Asunto(s)
Saccharomyces/crecimiento & desarrollo , Saccharomyces/genética , Microbiología del Suelo , Biodiversidad , Quercus/crecimiento & desarrollo , Quercus/microbiología , Saccharomyces/aislamiento & purificación , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA